

Issuance date: 31.20.2025
Validation: 21.11.2025
Validity date: 31.10.2030

Aluminium alloy 4115

Owner of the EPD:

Gränges Finspång AB
Address: Slottsvägen 1,
61281 Finspång, Sweden
Tel.: + 46-70-3574353
Website: www.granges.com
Contact: stefan.wass@granges.com

EPD Program Operator:

Instytut Techniki Budowlanej (ITB)
Address: Filtrowa 1,
00-611 Warsaw, Poland
Website: www.itb.pl
Contact: energia@itb.pl

ITB is the verified member of The European Platform for EPD program operators and LCA practitioner www.eco-platform.org

Basic information

This declaration is the Type III Environmental Product Declaration (EPD) based on EN 15804+A2 and verified according to ISO 14025 by an external auditor. It contains the information on the impacts of the declared construction materials on the environment and their aspects verified by the independent body according to ISO 14025. Basically, comparison or evaluation of EPD data is possible only if all the compared data were created according to EN 15804+A2.

Life cycle analysis (LCA): A1-A3, A4-A5, C1-C4 and D modules in accordance with EN 15804+A2
(Cradle-to-Gate with options)

Product standards: EN 485-1 to EN 485-4, EN 541, EN 546-1 to EN 546-4, EN 683-1 to EN 683-3, EN 1386, EN 1396

The year of preparing the EPD: 2025

Service Life: distribution, further processing and use of the products, as well as end-of-life treatment are unknown

PCR: ITB-PCR A v. 1.6 (PCR based on EN 15804+A2)

Declared unit: 1 kg

Reasons for performing LCA: B2B

Representativeness: Sweden, European, 2024

Type III Environmental Product Declaration No. 860/2025

MANUFACTURER

Gränges Finspång AB is a leading European manufacturer of advanced, cold-rolled aluminum alloys. The specialized factory is located in Finspång (Sweden). Manufacturer supplies highly engineered products for key industries, including automotive, electronics, and heating systems. With deep expertise in materials science and sustainable production, company creates lighter, more durable, and more energy-efficient solutions for the future.

PRODUCTS DESCRIPTION AND APPLICATION

The products covered by this EPD are produced at Gränges Finspång AB located in Finspång, Sweden. Aluminium alloy 4115 works very well for bending, roll forming and similar types of forming. Formability is equivalent to 3XXX alloys. The material can in normal conditions be melted by MIG, TIG, Laser and High frequency methods. Current to be used depends on the material, but 110 – 150 A is normal with a travel speed of 30 – 75 cm/min. This alloy is also suitable for other types of joining. All types of lacquering could be used on this material. It can also be anodized in order to strengthen the corrosion resistance. When anodized the surface will be a little darker than 3XXX alloys under identical conditions. According to field tests EN AW 4115 and 4117 shows similar results as 3XXX alloys. Also in simulated laboratory tests they performs similarly to AlMn-alloys. For normal applications this alloy is suitable either in mill finish or in painted condition. When aluminium is exposed outdoors it always develops a thin layer of oxidation which acts as a natural protection. If corrosion occurs all non-heat treatable aluminium alloys exhibit small pits. The depth of the deepest corrosion pits seldom exceeds 100µm and does not affect the strength of the material. As with all aluminium alloys, direct contact with a more noble material should be avoided and the surface should be kept clean and free from damage, in order to minimize the risk of corrosion. Target chemical composition of Aluminium alloy 4115 is presented in Table 1. Product is made of recycled aluminum (97.4%). Properties and formability equivalent to 3XXX-alloys. Alloy registered in EN 573-3/EN 485-2.

Table 1. Chemical composition of Aluminium alloy 4115 produced by Gränges Finspång.

SELECTION OF ALLOYS	Chemical Composition [Weight %]									Sustainability	
	Si	Fe	Cu	Mn	Mg	Zn	Ti	Other each	Total	Al	
EN AW 4017	0.6-1.6	<0.7	0.10-0.50	0.6-1.2	0.10-0.50	<0.2	-	<0.05	<0.15	Rem	< 5
EN AW 4115	1.8-2.2	<0.7	0.10-0.50	0.6-1.2	0.10-0.50	<0.2	-	<0.05	<0.15	Rem	< 5
EN AW 4115 mod	1.8-2.2	<0.7	0.10-0.50	0.6-1.2	0.10-0.50	<0.2	<0.15	<0.05	<0.15	Rem	< 5

MECHANICAL PROPERTIES	Typical mechanical properties in delivered condition			
	Temper	R _{p0.2} [MPa]	R _m [MPa]	A _{50mm} [%]
O	min 35	100-145	min 10	
H12	min 90	120-160	min 4	
H14	min 120	150-190	min 2	
H16	min 140	180-220	min 1	
H18	min 170	200-	min 1	

TECHNICAL DATA

Density at 20°C	2.72 kg/dm ³	Thermal expansivity	23 x 10 ⁻⁶ / °C-1
Melting range	560–640°C	Resistivity at 20°C	32 nΩm
Thermal capacity	900 J/kg x °C	Modulus of elasticity	70 GPa
Thermal conductivity	200 W/m x °C	Modulus of rigidity	27 GPa

All additional technical information about the product is available on the [manufacturer's website](#).

LIFE CYCLE ASSESSMENT (LCA) – general rules applied

Declared Unit

The declared unit is 1 kg of aluminum product (averaged) produced at Finspång.

System boundary

The life cycle analysis of the declared products covers "Product Stage" A1-A3, "Transport and Installation", A4-A5, "end of life" C1-C4+D modules in accordance with EN 15804+A2 and actual ITB PCRA (cradle to gate with options). Energy and water consumption, emissions as well as information on generated wastes were inventoried in manufacturing plant (LCI) and were included in the calculation. It can be assumed that the total sum of omitted processes does not exceed 2% of all impact categories. In accordance with EN 15804+A2, machines and facilities (capital goods) required for the production as well as transportation of employees were not included in LCA. Inputs and processes of product system are presented in Figure 1.

Allocation

The allocation principles used in this EPD are based on the general standards ITB PCR A v. 1.6 and EN 15804+A2. The production of aluminium products is carried out by Gränges Finspång AB at the production plant located in Sweden and covers 100% of production. The allocation is made based on the product weight. All predicted impacts from the extraction and processing of raw materials (recycled aluminium, alloys) are allocated in module A1 of the LCA. Raw materials for production such as external scrap for remelting, primary aluminium and recycled aluminium are supplied from external suppliers. Impacts from the global linear production of Gränges Finspång AB are estimated at 100% and have been assigned to the production of aluminium products. Water and energy consumption, related emissions and waste generation are assigned to module A3. Packaging materials are taken into account.

System limits

It can be assumed that the total sum of omitted processes does not exceed 2% of all impact categories. In accordance with EN 15804+A2, machines and facilities (capital goods) required for the production as well as transportation of employees were not included in LCA.

Modules A1 and A2: Raw materials supply and transport

Modules A1 and A2 show the extraction and processing of raw and secondary materials and transportation to the production site. The input material of aluminum, auxiliary materials come from both local and foreign suppliers. The main materials that are used to produce the products are included, in terms of recycled aluminium, primary aluminium ingots, and alloying elements. Packaging materials, rolling oil and emulsions are included but other ancillary materials used in the production (such as process gases, chemicals, materials used in maintenance of equipment etc. have been excluded. Means of transportation include ships and trucks. Average fuel consumption in Europe was used for calculation purposes and electricity of Swede (rails). Recycled aluminum is delivered from several supplier with specific distances.

Module A3: Production

Production is based on the direct casting method carried out in the casting house. Further processing takes place in appropriate hot and cold rolling mills. Finishing equipment includes tension levelling, automatic inspection systems, slitting machines for thin and thick sheets, as well as lines for cutting to length and chemical processing. The production processes are shown in Figure 2. Electricity supplied is from grid electricity (Vattenfall). Production line (melting/holding furnaces) is based on

Propane combustion. Production uses also municipal district heating renewable energy based.

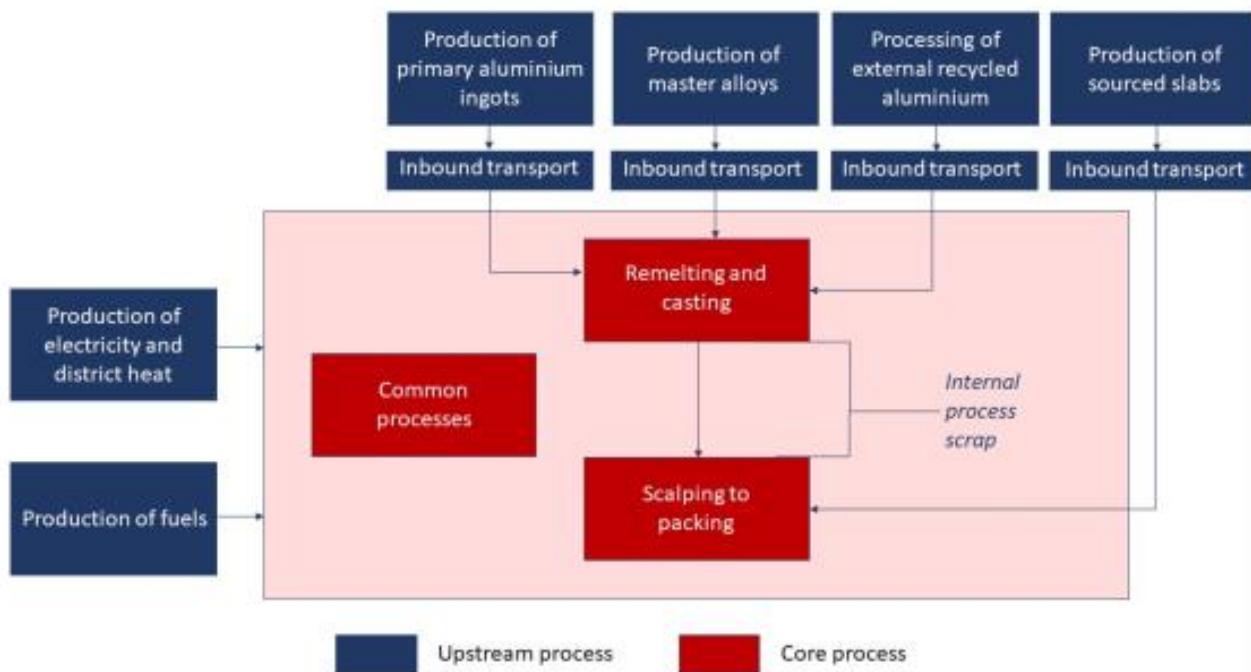


Figure 2. Diagram of the manufacturing process of aluminium alloy 4115

Module A4: Transport to consumer

Vehicle transport at distance 100 km is considered (emission standard: Euro 5) with 100% load capacity.

Modules C1-C4 and D: End-of-life (EOL)

It is assumed that at the End-of-Life, the aluminium products are dismantled using power tools. Recovered material is transported to waste processing plant distant of about 100 km using > 24t lorry with 100% capacity utilization and fuel consumption of 35 L per 100 km (module C2). About 90% of the resulting aluminium scrap undergo recycling after shredding (C3) while the remaining 10% of them is forwarded to landfill in the form of mixed construction and demolition waste. Environmental burdens declared in module C4 are associated with treatment of aluminium scrap, prepared for recycling at refiner and waste-specific emissions to air and groundwater via landfill. A potential credit resulting from the recycling of the aluminium scrap are presented in module D (calculated for the primary aluminium content).

Table 2. End-of-life scenario for the aluminium products produced by Gränges Finspång S.A.

Material	Material recovery	Recycling	Landfilling
Aluminium scrap	100%	90%	10%

Data collection period

The data for manufacture of the declared products refer to period between 01.01.2024 – 31.12.2024 (1 year). The life cycle assessments were prepared for Poland and Europe as reference area.

Data quality

The values determined to calculate A1-A3 originate from verified Process LCI inventory data from manufacturing plant. A1 values were prepared considering input products characteristics and are based on Ecoinvent v 3.11 and available supplier EPDs. The energy consumption in production and its impact on the production process were inventoried and calculated. For aluminium, the weighted average carbon footprint declared by suppliers was used. In accordance with Annex E of the EN 15804 + A2, a data quality assessment was performed. For technical representativeness, processes with a quality level of "very good" account for 99% of the value for climate change indicator. For geographical and time representativeness, processes level of "very good" is obtained.

Assumptions and estimates

The impacts of the representative product were aggregated using a weighted average (all products). According to the data adopted for the Ecoinvent v3.11 the scrap database, post-consumer is not burdened with the environmental impacts, however, scrap processing impacts were included.

Calculation rules

LCA was performed using ITB-LCA tool developed in accordance with EN15804+A2. Emission of greenhouse gases was calculated using the IPCC GWP 2021 method with a 100-year horizon. Emission of acidifying substances, emission of substances to water contributing to oxygen depletion, emission of gases that contribute to the creation of ground-level ozone, abiotic depletion, and ozone depletion emissions were all calculated with the EF 3.1. method.

Databases

The data for the processes come from the following databases: Ecoinvent v.3.11, specific EPDs for suppliers. Specific data quality analysis was a part of audit.

Additional information

The electricity (Ecoinvent v.3.11 data, for Sweden) emission factor used is 0.0349 kg CO₂/kWh. As a general rule, no particular environmental or health protection measures other than those specified by law are necessary.

Type III Environmental Product Declaration No. 860/2025

LIFE CYCLE ASSESSMENT (LCA) – Results

Declared unit

The declaration refers to declared unit (DU) – 1 kg of the Aluminium alloy 4115 produced by Gränges Finspång AB. The following life cycle modules (Table 2) were included in the analysis.

Table 2 System boundaries for the environmental characteristic of the product.

Environmental assessment information (MD – Module Declared, MND – Module Not Declared, INA – Indicator Not Assessed)																
Product stage			Construction process		Use stage							End of life				Benefits and loads beyond the system boundary
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction-installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery-recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MD	MD	MD	MD	MD

Type III Environmental Product Declaration No. 860/2025

Table 3 Life cycle assessment (LCA) results of the product – environmental impacts (DU: 1 kg) - EF v.3.1 EN 15804

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	C1	C2	C3	C4	D
Global Warming Potential	eq. kg CO ₂	3.67E+00	1.80E-01	8.77E-02	3.94E+00	1.67E-02	3.53E-03	4.23E-03	1.67E-02	6.98E-01	1.06E-03	-5.94E-01
Greenhouse potential - fossil	eq. kg CO ₂	3.70E+00	1.80E-01	1.37E-01	4.01E+00	1.66E-02	3.43E-03	4.11E-03	1.66E-02	6.97E-01	1.05E-03	-6.71E-01
Greenhouse potential - biogenic	eq. kg CO ₂	-2.66E-02	1.31E-04	2.17E-03	-2.42E-02	5.68E-05	1.00E-04	1.20E-04	5.68E-05	4.89E-04	1.06E-05	2.49E-02
Global warming potential - land use and land use change	eq. kg CO ₂	4.74E-03	8.28E-05	2.31E-05	4.84E-03	6.52E-06	1.20E-06	1.44E-06	6.52E-06	1.23E-03	1.07E-06	-2.12E-03
Stratospheric ozone depletion potential	eq. kg CFC 11	4.69E-08	3.93E-09	1.38E-09	5.22E-08	3.85E-09	7.00E-11	8.40E-11	3.85E-09	2.08E-08	3.20E-10	-4.87E-08
Soil and water acidification potential	eq. mol H ⁺	7.39E-02	3.76E-04	6.30E-05	7.44E-02	6.75E-05	3.80E-05	4.56E-05	6.75E-05	6.19E-03	8.88E-06	-7.36E-02
Eutrophication potential - freshwater	eq. kg P	4.21E-04	1.24E-05	8.18E-06	4.41E-04	1.12E-06	6.50E-06	7.80E-06	1.12E-06	2.93E-04	3.06E-07	-3.75E-04
Eutrophication potential - seawater	eq. kg N	1.17E-03	9.36E-05	1.70E-05	1.28E-03	2.04E-05	5.50E-06	6.60E-06	2.04E-05	9.04E-04	3.06E-06	-1.12E-03
Eutrophication potential - terrestrial	eq. mol N	1.23E-02	9.49E-04	1.46E-04	1.34E-02	2.22E-04	4.65E-05	5.58E-05	2.22E-04	9.84E-03	3.33E-05	-1.24E-02
Potential for photochemical ozone synthesis	eq. kg NMVOC	4.73E-03	5.85E-04	6.97E-05	5.38E-03	6.80E-05	1.30E-05	1.56E-05	6.80E-05	3.70E-03	9.64E-06	-4.98E-03
Potential for depletion of abiotic resources - non-fossil resources	eq. kg Sb	2.04E-05	5.92E-07	3.47E-08	2.11E-05	5.89E-08	1.67E-08	2.00E-08	5.89E-08	1.55E-05	3.56E-09	-2.08E-05
Abiotic depletion potential - fossil fuels	MJ	1.23E+01	2.56E+00	5.87E-01	1.55E+01	2.47E-01	5.80E-02	6.96E-02	2.47E-01	8.36E+00	2.43E-02	-1.37E+01
Water deprivation potential	eq. m ³	3.55E-01	1.23E-02	5.19E-03	3.73E-01	1.14E-03	1.20E-03	1.44E-03	1.14E-03	2.24E-01	1.41E-04	-2.03E-01

Table 4 Life cycle assessment (LCA) results of the product – additional impacts indicators - EF v.3.1 EN 15804

Indicator	Unit	A1-A5	C1-C4	D
Particulate matter	disease incidence	INA	INA	INA
Potential human exposure efficiency relative to U235	eg. kBq U235	INA	INA	INA
Potential comparative toxic unit for ecosystems	CTUe	INA	INA	INA
Potential comparative toxic unit for humans (cancer effects)	CTUh	INA	INA	INA
Potential comparative toxic unit for humans (non-cancer effects)	CTUh	INA	INA	INA
Potential soil quality index	dimensionless	INA	INA	INA

Type III Environmental Product Declaration No. 860/2025

Table 5 Life cycle assessment (LCA) results of the product - the resource use - EF v.3.1 EN 15804

Indicator	Unit	A1	A2	A3	A1-A3	A4		C1	C2	C3	C4	D
Consumption of renewable primary energy - excluding renewable primary energy sources used as raw materials	MJ	2.06E+00	4.43E-02	4.95E+00	7.06E+00	3.54E-03	4.30E-03	5.16E-03	3.54E-03	7.07E-01	4.27E-04	-6.35E+00
Consumption of renewable primary energy resources used as raw materials	MJ	3.65E-01	0.00E+00	1.63E-02	3.81E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-3.81E-01
Total consumption of renewable primary energy resources	MJ	2.43E+00	4.43E-02	4.96E+00	7.44E+00	3.54E-03	4.30E-03	5.16E-03	3.54E-03	7.07E-01	4.27E-04	-1.80E+00
Consumption of non-renewable primary energy - excluding renewable primary energy sources used as raw materials	MJ	1.22E+01	2.56E+00	8.44E+00	2.32E+01	2.47E-01	5.82E-02	6.98E-02	2.47E-01	8.36E+00	2.63E-02	-2.12E+01
Consumption of non-renewable primary energy resources used as raw materials	MJ	3.06E-01	0.00E+00	1.07E-02	3.16E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-3.16E-01
Total consumption of non-renewable primary energy resources	MJ	1.25E+01	2.56E+00	8.45E+00	2.35E+01	2.47E-01	5.82E-02	6.98E-02	2.47E-01	8.36E+00	2.63E-02	-2.15E+01
Consumption of secondary materials	kg	9.77E-01	1.10E-03	8.29E-05	9.78E-01	8.27E-05	5.30E-06	6.36E-06	8.27E-05	2.99E-02	0.00E+00	-9.77E-01
Consumption of renew. secondary fuels	MJ	9.52E-03	1.12E-05	1.60E-07	9.53E-03	9.11E-07	2.95E-08	3.55E-08	9.11E-07	1.25E-04	0.00E+00	-9.53E-03
Consumption of non-renewable secondary fuels	MJ	3.42E-05	0.00E+00	0.00E+00	3.42E-05	0.00E+00	4.70E-05	5.63E-05	0.00E+00	0.00E+00	0.00E+00	-3.42E-05
Net consumption of freshwater	m ³	1.14E-02	3.12E-04	6.65E-02	7.82E-02	3.10E-05	1.58E-05	1.89E-05	3.10E-05	5.01E-03	3.79E-06	-7.42E-02

Table 6 Life cycle assessment (LCA) results of the product – waste categories - EF v.3.1 EN 15804

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	C1	C2	C3	C4	D
Hazardous waste	kg	8.32E-02	1.58E-03	1.14E-02	9.62E-02	2.77E-04	6.00E-07	7.20E-07	2.77E-04	5.31E-02	3.83E-08	-8.25E-02
Non-hazardous waste	kg	1.87E+00	5.51E-02	3.90E-02	1.97E+00	4.92E-03	3.12E-05	3.74E-05	4.92E-03	1.22E+00	1.00E-01	-1.69E+00
Radioactive waste	kg	5.80E-02	1.01E-06	1.40E-06	5.80E-02	1.84E-08	4.35E-08	5.22E-08	1.84E-08	9.81E-06	1.48E-07	7.50E-03
Components for re-use	kg	0.00E+00										
Materials for recycling	kg	2.02E-01	1.94E-05	5.91E-02	2.61E-01	7.64E-07	6.00E-08	7.20E-08	7.64E-07	5.43E-02	0.00E+00	-2.61E-01
Materials for energy recovery	kg	1.40E-06	5.12E-08	7.30E-09	1.46E-06	6.18E-09	5.25E-10	6.30E-10	6.18E-09	8.58E-07	0.00E+00	-1.43E-06
Exported Energy	MJ	2.44E-02	3.61E-03	8.61E-04	2.88E-02	0.00E+00	1.73E-04	2.08E-04	0.00E+00	5.91E-03	0.00E+00	-2.85E-02

Verification

The process of verification of this EPD is in accordance with ISO 14025 and ISO 21930. After verification, this EPD is valid for a 5-year-period. EPD does not have to be recalculated after 5 years, if the underlying data have not changed significantly.

The basis for LCA analysis was EN 15804 and ITB PCR A

Independent verification corresponding to ISO 14025 (subclause 8.1.3.)

external internal

External verification of EPD: PhD. Eng. Halina Prejzner

LCI audit and verification: Filip Poznański, M.Sc. Eng.

LCA, LCI audit and input data verification: Michał Piasecki, PhD., D.Sc., Eng.

Note 1: The declaration owner has the sole ownership, liability, and responsibility for the information provided and contained in EPD. Declarations of construction products may not be comparable if they do not comply with EN 15804+A2. For further information about comparability, see EN 15804+A2 and ISO 14025.

Note 2: ITB is a public Research Organization and Notified Body (EC Reg. no 1488) to the European Commission and to other Member States of the European Union designated for the tasks concerning the assessment of building products' performance. ITB acts as the independent, third-party verification organization (ISO 17025/17065/17029). ITB-EPD program is recognized and registered member of The European Platform - Association of EPD program operators and ITB-EPD declarations are registered and stored in the international ECO-PORTAL.

Normative references

- ITB PCR A General Product Category Rules for Construction Products
- EN 485-1 Aluminium and aluminium alloys. Sheet, strip and plate. Part 1: Technical conditions for inspection and delivery.
- EN 485-2 Aluminium and aluminium alloys. Sheet, strip and plate. Part 2: Mechanical properties.
- EN 485- 3 Aluminium and aluminium alloys. Sheet, strip and plate. Part 3: Tolerances on dimensions and shape for hot-rolled product.
- EN 485-4 Aluminium and aluminium alloys. Sheet, strip and plate. Part 4: Tolerances on dimensions and shape for cold-rolled product.
- EN 541 Aluminum and aluminum alloys. Rolled products for cans, closures and lids. Technical Specifications.
- EN 546-1 Aluminium and aluminium alloys. Foil. Part 1: Technical conditions for inspection and delivery.
- EN 546-2 Aluminium and aluminium alloys. Foil. Part 2: Mechanical properties.
- EN 546-3 Aluminium and aluminium alloys. Foil. Part 3: Tolerances on dimensions.
- EN 546-4 Aluminium and aluminium alloys. Foil. Part 4: Special property requirements.
- EN 683-1 Aluminium and aluminium alloys. Finstock. Part 1: Technical conditions for inspection and delivery.
- EN 683-2 Aluminium and aluminium alloys. Finstock. Part 2: Mechanical properties.
- EN 683-3 Aluminium and aluminium alloys. Finstock. Part 3: Tolerances on dimensions and form.
- EN 1386 Aluminium and aluminium alloys. Tread plate. Specifications.
- EN 1396 Aluminium and aluminium alloys. Coil coated sheet and strip for general applications. Specifications.
- ISO 14025:2006, Environmental labels and declarations – Type III environmental declarations – Principles and procedures
- ISO 21930:2017 Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services
- ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines
- ISO 15686-1:2011 Buildings and constructed assets – Service life planning – Part 1: General principles and framework

Type III Environmental Product Declaration No. 860/2025

- ISO 15686-8:2008 Buildings and constructed assets – Service life planning – Part 8: Reference service life and service-life estimation
- EN 15804:2012+A2:2019 Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products
- ISO 14067:2018 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification
- PN-EN 15942:2012 Sustainability of construction works – Environmental product declarations – Communication format business-to-business
- <https://ecoinvent.org/>

LCA,LCI, input data verification
Michał Piasecki, PhD. D.Sc.

Qualified electronic signature

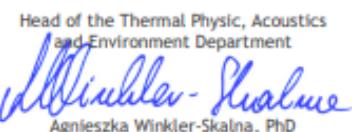
Head of Thermal Physic, Acoustic and Environment Department
Agnieszka Winkler-Skalna, PhD.

Qualified electronic signature

Thermal Physics, Acoustics and Environment Department
02-656 Warsaw, Ksawerów 21

CERTIFICATE № 860/2025 of TYPE III ENVIRONMENTAL DECLARATION

Products:
Aluminium alloy 4115


Manufacturer:
Gränges Finspång AB
Slottsvägen 1, 61281 Finspång, Sweden

confirms the correctness of the data included in the development of
Type III Environmental Declaration and accordance with the requirements of the standard

EN 15804+A2

**Sustainability of construction works.
Environmental product declarations.
Core rules for the product category of construction products.**

This certificate, issued on 30th October 2025 is valid for 5 years
or until amendment of mentioned Environmental Declaration

Head of the Thermal Physics, Acoustics
and Environment Department

Agnieszka Winkler-Skalna, PhD

Deputy Director
for Research and Innovation

Krzysztof Kućzyński, PhD

Warsaw, October 2025